Early Detection of Network Fault Using Improved Gray Wolf Optimization and Wavelet Neural Network
نویسندگان
چکیده
To address the problem of diagnostic accuracy and stability degradation caused by random selection initial parameters for wavelet neural network (WNN) fault diagnosis model, this paper proposes a troubleshooting model based on improved gray wolf algorithm (IGWO) network. First, convergence factor policy weight update are redesigned in IGWO algorithm. This study uses nonlinear to balance global local search capabilities dynamically adjusts weights according adaptability head α strengthen its leadership position. Thereafter, biases WNN optimized using During backpropagation error, momentum factors introduced prevent from falling into optimization. Experimental results show that is far better than GWO terms speed accuracy. Furthermore, average IGWO-WNN KDD-CUP99 dataset reaches 99.22%, which 1.15% higher significantly improved.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملReliable epileptic seizure detection using an improved wavelet neural network.
BACKGROUND Electroencephalogram (EEG) signal analysis is indispensable in epilepsy diagnosis as it offers valuable insights for locating the abnormal distortions in the brain wave. However, visual interpretation of the massive amounts of EEG signals is time-consuming, and there is often inconsistent judgment between experts. AIMS This study proposes a novel and reliable seizure detection syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2022
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2022/1235229